Search results for "Orlicz-Sobolev space"

showing 5 items of 5 documents

Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis

2021

We give sufficient conditions for the existence of weak solutions to quasilinear elliptic Dirichlet problem driven by the A-Laplace operator in a bounded domain Ω. The techniques, based on a variant of the symmetric mountain pass theorem, exploit variational methods. We also provide information about the asymptotic behavior of the solutions as a suitable parameter goes to 0 + . In this case, we point out the existence of a blow-up phenomenon. The analysis developed in this paper extends and complements various qualitative and asymptotic properties for some cases described by homogeneous differential operators.

Asymptotic analysisLaplace transformGeneral Mathematics010102 general mathematicsNonparametric statistics01 natural sciencesDirichlet boundary value problem010101 applied mathematicsasymptotic analysisA-Laplace operatorOrlicz-Sobolev spaceSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsParametric statisticsMathematicsAsymptotic Analysis
researchProduct

Elliptic problems with convection terms in Orlicz spaces

2021

Abstract The existence of a solution to a Dirichlet problem, for a class of nonlinear elliptic equations, with a convection term, is established. The main novelties of the paper stand on general growth conditions on the gradient variable, and on minimal assumptions on Ω. The approach is based on the method of sub and supersolutions. The solution is a zero of an auxiliary pseudomonotone operator build via truncation techniques. We present also some examples in which we highlight the generality of our growth conditions.

Dirichlet problemGradient dependenceClass (set theory)Truncation methodsTruncationApplied Mathematics010102 general mathematicsZero (complex analysis)Orlicz-Sobolev spacesNonlinear elliptic equationsTerm (logic)01 natural sciences010101 applied mathematicsNonlinear systemOperator (computer programming)Subsolution and supersolutionSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsAnalysisMathematicsVariable (mathematics)Journal of Mathematical Analysis and Applications
researchProduct

Multiple solutions for parametric double phase Dirichlet problems

2020

We consider a parametric double phase Dirichlet problem. Using variational tools together with suitable truncation and comparison techniques, we show that for all parametric values [Formula: see text] the problem has at least three nontrivial solutions, two of which have constant sign. Also, we identify the critical parameter [Formula: see text] precisely in terms of the spectrum of the [Formula: see text]-Laplacian.

Dirichlet problemlocal minimizersTruncationApplied MathematicsGeneral MathematicsMusielak-Orlicz-Sobolev spacesDirichlet distributionsymbols.namesakeDouble phaseSettore MAT/05 - Analisi MatematicaDouble phase integrandsymbolseigenvalues of the q-LaplacianApplied mathematicsSettore MAT/03 - Geometriaunbalanced growthParametric statisticsMathematics
researchProduct

A density result on Orlicz-Sobolev spaces in the plane

2018

We show the density of smooth Sobolev functions $W^{k,\infty}(\Omega)\cap C^\infty(\Omega)$ in the Orlicz-Sobolev spaces $L^{k,\Psi}(\Omega)$ for bounded simply connected planar domains $\Omega$ and doubling Young functions $\Psi$.

Pure mathematicsMathematics::Functional AnalysisdensityPlane (geometry)Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsSobolev space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsSobolev spacePlanarMathematics - Classical Analysis and ODEsOrlicz-Sobolev spaceBounded functionSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsfunktionaalianalyysiAnalysisMathematics
researchProduct

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces

2022

We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz-Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.

sub-supersolutionMathematics - Analysis of PDEsOrlicz-Sobolev spaceSettore MAT/05 - Analisi Matematicagradient dependenceGeneral Mathematicsnonlinear elliptic equationFOS: Mathematics35J25 35J99 46E35Analysis of PDEs (math.AP)
researchProduct